Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Biol ; 21(1): 103, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158879

RESUMO

BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.


Assuntos
Genoma Mitocondrial , Animais , Humanos , Mitocôndrias , DNA Mitocondrial/genética , Genoma Humano , Estrutura Secundária de Proteína , DNA de Cadeia Simples , Mamíferos
2.
Commun Biol ; 5(1): 600, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725766

RESUMO

Cellular development is tightly regulated as mature cells with aberrant functions may initiate pathogenic processes. The endometrium is a highly regenerative tissue, shedding and regenerating each month. Endometrial stromal fibroblasts are regenerated each cycle from mesenchymal stem cells and play a pivotal role in endometriosis, a disease characterised by endometrial cells that grow outside the uterus. Why the cells of some women are more capable of developing into endometriosis lesions is not clear. Using isolated, purified and cultured endometrial cells of mesenchymal origin from 19 women with (n = 10) and without (n = 9) endometriosis we analysed the transcriptome of 33,758 individual cells and compared these to clinical characteristics and in vitro growth profiles. We show purified mesenchymal cell cultures include a mix of mesenchymal stem cells and two endometrial stromal fibroblast subtypes with distinct transcriptomic signatures indicative of varied progression through the differentiation processes. The fibroblast subgroup characterised by incomplete differentiation was predominantly (81%) derived from women with endometriosis and exhibited an altered in vitro growth profile. These results uncover an inherent difference in endometrial cells of women with endometriosis and highlight the relevance of cellular differentiation and its potential to contribute to disease susceptibility.


Assuntos
Endometriose , Células-Tronco Mesenquimais , Diferenciação Celular , Endometriose/genética , Endométrio , Feminino , Fibroblastos/patologia , Humanos
3.
iScience ; 24(11): 103326, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805788

RESUMO

Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial microorganisms. Human papillomavirus (HPV) infection can promote malignant epithelial transformation. As LCs are considered important for controlling HPV infection, we compared the transcriptome of murine LCs from skin transformed by K14E7 oncoprotein and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal skin, associated with ontogeny, cell cycle, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was significantly disturbed in HPV16 E7-transformed skin. Hyperplastic skin was depleted of immune-stimulatory LCs and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte crosstalk was dysregulated. We identified reduced expression of interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers.

4.
STAR Protoc ; 2(4): 100842, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585169

RESUMO

Here, we outline detailed protocols to isolate and profile murine splenic dendritic cells (DCs) through advanced flow cytometry of the myeloid compartment and single-cell transcriptomic profiling with integrated cell surface protein expression through CITE-seq. This protocol provides a general transferrable road map for different tissues and species. For complete details on the use and execution of this protocol, please refer to Lukowski et al. (2021).


Assuntos
Perfilação da Expressão Gênica , Células Mieloides , Animais , Citometria de Fluxo/métodos , Proteínas de Membrana , Camundongos , Análise em Microsséries
5.
iScience ; 24(5): 102402, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997687

RESUMO

Conventional dendritic cells (cDCs) are traditionally subdivided into cDC1 and cDC2 lineages. Batf3 is a cDC1-required transcription factor, and we observed that Batf3-/- mice harbor a population of cDC1-like cells co-expressing cDC2-associated surface molecules. Using single-cell RNA sequencing with integrated cell surface protein expression (CITE-seq), we found that Batf3-/- mitotic immature cDC1-like cells showed reduced expression of cDC1 features and increased levels of cDC2 features. In wild type, we also observed a proportion of mature cDC1 cells expressing surface features characteristic to cDC2 and found that overall cDC cell state heterogeneity was mainly driven by developmental stage, proliferation, and maturity. We detected population diversity within Sirpa+ cDC2 cells, including a Cd33+ cell state expressing high levels of Sox4 and lineage-mixed features characteristic to cDC1, cDC2, pDCs, and monocytes. In conclusion, these data suggest that multiple cDC cell states can co-express lineage-overlapping features, revealing a level of previously unappreciated cDC plasticity.

6.
Genome Biol ; 22(1): 76, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673841

RESUMO

BACKGROUND: The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) has provided a foundation for in vitro human disease modelling, drug development and population genetics studies. Gene expression plays a critical role in complex disease risk and therapeutic response. However, while the genetic background of reprogrammed cell lines has been shown to strongly influence gene expression, the effect has not been evaluated at the level of individual cells which would provide significant resolution. By integrating single cell RNA-sequencing (scRNA-seq) and population genetics, we apply a framework in which to evaluate cell type-specific effects of genetic variation on gene expression. RESULTS: Here, we perform scRNA-seq on 64,018 fibroblasts from 79 donors and map expression quantitative trait loci (eQTLs) at the level of individual cell types. We demonstrate that the majority of eQTLs detected in fibroblasts are specific to an individual cell subtype. To address if the allelic effects on gene expression are maintained following cell reprogramming, we generate scRNA-seq data in 19,967 iPSCs from 31 reprogramed donor lines. We again identify highly cell type-specific eQTLs in iPSCs and show that the eQTLs in fibroblasts almost entirely disappear during reprogramming. CONCLUSIONS: This work provides an atlas of how genetic variation influences gene expression across cell subtypes and provides evidence for patterns of genetic architecture that lead to cell type-specific eQTL effects.


Assuntos
Reprogramação Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Locos de Características Quantitativas , RNA-Seq/métodos , Análise de Célula Única , Biologia Computacional/métodos , Fibroblastos/citologia , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Especificidade de Órgãos/genética , Análise de Célula Única/métodos
7.
Front Microbiol ; 12: 789042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145494

RESUMO

Squamous cell carcinoma (SCC) is a common type of skin cancer that typically arises from premalignant precursor lesions named actinic keratoses (AK). Chronic inflammation is a well-known promoter of skin cancer progression. AK and SCC have been associated with an overabundance of the bacterium Staphylococcus aureus (S. aureus). Certain secreted products from S. aureus are known to promote cutaneous pro-inflammatory responses; however, not all S. aureus strains produce these. As inflammation plays a key role in SCC development, we investigated the pro-inflammatory potential and toxin secretion profiles of skin-cancer associated S. aureus. Sterile culture supernatants ("secretomes") of S. aureus clinical strains isolated from AK and SCC were applied to human keratinocytes in vitro. Some S. aureus secretomes induced keratinocytes to overexpress inflammatory mediators that have been linked to skin carcinogenesis, including IL-6, IL-8, and TNFα. A large phenotypic variation between the tested clinical strains was observed. Strains that are highly pro-inflammatory in vitro also caused more pronounced skin inflammation in mice. Proteomic characterization of S. aureus secretomes using mass spectrometry established that specific S. aureus enzymes and cytolytic toxins, including hemolysins, phenol-soluble modulins, and serine proteases, as well as currently uncharacterized proteins, correlate with the pro-inflammatory S. aureus phenotype. This study is the first to describe the toxin secretion profiles of AK and SCC-associated S. aureus, and their potential to induce a pro-inflammatory environment in the skin. Further studies are needed to establish whether these S. aureus products promote SCC development by mediating chronic inflammation.

8.
Thromb Haemost ; 121(4): 433-448, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33302304

RESUMO

Thrombosis is a leading cause of morbidity and mortality. Fibrinogen, the soluble substrate for fibrin-based clotting, has a central role in haemostasis and thrombosis and its plasma concentration correlates with cardiovascular disease event risk and a prothrombotic state in experimental models. We aimed to identify chemical entities capable of changing fibrinogen production and test their impact on experimental thrombosis. A total of 1,280 bioactive compounds were screened for their ability to alter fibrinogen production by hepatocyte-derived cancer cells and a selected panel was tested in zebrafish larvae. Anthralin and all-trans retinoic acid (RA) were identified as fibrinogen-lowering and fibrinogen-increasing moieties, respectively. In zebrafish larvae, anthralin prolonged laser-induced venous- occlusion times and reduced thrombocyte accumulation at injury sites. RA had opposite effects. Treatment with RA, a nuclear receptor ligand, increased fibrinogen mRNA levels. Using an antisense morpholino oligonucleotide to deplete zebrafish fibrinogen, we correlated a shortening of laser-induced venous thrombosis times with RA treatment and fibrinogen protein levels. Anthralin had little effect on fibrinogen mRNA in zebrafish larvae, despite leading to lower detectable fibrinogen. Therefore, we made a proteomic scan of anthralin-treated cells and larvae. A reduced representation of proteins linked to the canonical secretory pathway was detected, suggesting that anthralin affects protein secretion. In summary, we found that chemical modulation of fibrinogen levels correlates with measured effects on experimental venous thrombosis and could be investigated as a therapeutic avenue for thrombosis prevention.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fibrinogênio/metabolismo , Fibrinolíticos/farmacologia , Trombose Venosa/tratamento farmacológico , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Antralina/farmacologia , Modelos Animais de Doenças , Fibrinogênio/genética , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Morfolinos/farmacologia , Mutação , Oligonucleotídeos Antissenso/farmacologia , Proteômica , Bibliotecas de Moléculas Pequenas , Tretinoína/farmacologia , Trombose Venosa/genética , Trombose Venosa/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-32670895

RESUMO

Human papillomavirus (HPV) infection is associated with a range of malignancies that affect anogenital and oropharyngeal sites. α-HPVs dominantly infect basal epithelial cells of mucosal tissues, where they dysregulate cell division and local immunity. The cervix is one of the mucosal sites most susceptible to HPV infections. It consists of anatomically diverse regions, and the majority of cervical intraepithelial neoplasia and cancers arise within the cervical squamo-columnar junction where undifferentiated basal progenitor cells with stem cell properties are found. The cancer stem cell theory particularly associates tumorigenesis, invasion, dissemination, and metastasis with cancer cells exhibiting stem cell properties. In this perspective, we discuss evidence of a cervical cancer stem cell niche and explore the association of stemness related genes with 5-year survival using a publicly available transcriptomic dataset of a cervical cancer cohort. We report that poor prognosis in this cohort correlates with overexpression of a subset of stemness pathway genes, a majority of which regulate the central Focal Adhesion pathway, and are also found to be enriched in the HPV infection pathway. These observations support therapeutic targeting of stemness genes overexpressed by mucosal cells infected with high-risk HPVs.


Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomaviridae/genética
10.
Hum Reprod ; 35(2): 377-393, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32103259

RESUMO

STUDY QUESTION: Are genetic effects on endometrial gene expression tissue specific and/or associated with reproductive traits and diseases? SUMMARY ANSWER: Analyses of RNA-sequence data and individual genotype data from the endometrium identified novel and disease associated, genetic mechanisms regulating gene expression in the endometrium and showed evidence that these mechanisms are shared across biologically similar tissues. WHAT IS KNOWN ALREADY: The endometrium is a complex tissue vital for female reproduction and is a hypothesized source of cells initiating endometriosis. Understanding genetic regulation specific to, and shared between, tissue types can aid the identification of genes involved in complex genetic diseases. STUDY DESIGN, SIZE, DURATION: RNA-sequence and genotype data from 206 individuals was analysed and results were compared with large publicly available datasets. PARTICIPANTS/MATERIALS, SETTING, METHODS: RNA-sequencing and genotype data from 206 endometrial samples was used to identify the influence of genetic variants on gene expression, via expression quantitative trait loci (eQTL) analysis and to compare these endometrial eQTLs with those in other tissues. To investigate the association between endometrial gene expression regulation and reproductive traits and diseases, we conducted a tissue enrichment analysis, transcriptome-wide association study (TWAS) and summary data-based Mendelian randomisation (SMR) analyses. Transcriptomic data was used to test differential gene expression between women with and without endometriosis. MAIN RESULTS AND THE ROLE OF CHANCE: A tissue enrichment analysis with endometriosis genome-wide association study summary statistics showed that genes surrounding endometriosis risk loci were significantly enriched in reproductive tissues. A total of 444 sentinel cis-eQTLs (P < 2.57 × 10-9) and 30 trans-eQTLs (P < 4.65 × 10-13) were detected, including 327 novel cis-eQTLs in endometrium. A large proportion (85%) of endometrial eQTLs are present in other tissues. Genetic effects on endometrial gene expression were highly correlated with the genetic effects on reproductive (e.g. uterus, ovary) and digestive tissues (e.g. salivary gland, stomach), supporting a shared genetic regulation of gene expression in biologically similar tissues. The TWAS analysis indicated that gene expression at 39 loci is associated with endometriosis, including five known endometriosis risk loci. SMR analyses identified potential target genes pleiotropically or causally associated with reproductive traits and diseases including endometriosis. However, without taking account of genetic variants, a direct comparison between women with and without endometriosis showed no significant difference in endometrial gene expression. LARGE SCALE DATA: The eQTL dataset generated in this study is available at http://reproductivegenomics.com.au/shiny/endo_eqtl_rna/. Additional datasets supporting the conclusions of this article are included within the article and the supplementary information files, or are available on reasonable request. LIMITATIONS, REASONS FOR CAUTION: Data are derived from fresh tissue samples and expression levels are an average of expression from different cell types within the endometrium. Subtle cell-specifc expression changes may not be detected and differences in cell composition between samples and across the menstrual cycle will contribute to sample variability. Power to detect tissue specific eQTLs and differences between women with and without endometriosis was limited by the sample size in this study. The statistical approaches used in this study identify the likely gene targets for specific genetic risk factors, but not the functional mechanism by which changes in gene expression may influence disease risk. WIDER IMPLICATIONS OF THE FINDINGS: Our results identify novel genetic variants that regulate gene expression in endometrium and the majority of these are shared across tissues. This allows analysis with large publicly available datasets to identify targets for female reproductive traits and diseases. Much larger studies will be required to identify genetic regulation of gene expression that will be specific to endometrium. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Health and Medical Research Council (NHMRC) under project grants GNT1026033, GNT1049472, GNT1046880, GNT1050208, GNT1105321, GNT1083405 and GNT1107258. G.W.M is supported by a NHMRC Fellowship (GNT1078399). J.Y is supported by an ARC Fellowship (FT180100186). There are no competing interests.


Assuntos
Endometriose , Estudo de Associação Genômica Ampla , Endometriose/genética , Endométrio , Feminino , Humanos , Ciclo Menstrual , Locos de Características Quantitativas
11.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31917836

RESUMO

The ontogeny of airway macrophages (AMs) in human lung and their contribution to disease are poorly mapped out. In mice, aging is associated with an increasing proportion of peripherally, as opposed to perinatally derived AMs. We sought to understand AM ontogeny in human lung during healthy aging and after transplant. We characterized monocyte/macrophage populations from the peripheral blood and airways of healthy volunteers across infancy/childhood (2-12 yr), maturity (20-50 yr), and older adulthood (>50 yr). Single-cell RNA sequencing (scRNA-seq) was performed on airway inflammatory cells isolated from sex-mismatched lung transplant recipients. During healthy aging, the proportions of blood bronchoalveolar lavage (BAL) classical monocytes peak in adulthood and decline in older adults. scRNA-seq of BAL cells from lung transplant recipients indicates that after transplant, the majority of AMs are recipient derived. These data show that during aging, the peripheral monocyte phenotype is consistent with that found in the airways and, furthermore, that the majority of human AMs after transplant are derived from circulating monocytes.


Assuntos
Envelhecimento Saudável/fisiologia , Pulmão/fisiologia , Macrófagos Alveolares/fisiologia , Monócitos/fisiologia , Adulto , Animais , Lavagem Broncoalveolar/métodos , Criança , Pré-Escolar , Feminino , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
12.
NAR Genom Bioinform ; 2(2): lqaa034, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575589

RESUMO

The libraries generated by high-throughput single cell RNA-sequencing (scRNA-seq) platforms such as the Chromium from 10× Genomics require considerable amounts of sequencing, typically due to the large number of cells. The ability to use these data to address biological questions is directly impacted by the quality of the sequence data. Here we have compared the performance of the Illumina NextSeq 500 and NovaSeq 6000 against the BGI MGISEQ-2000 platform using identical Single Cell 3' libraries consisting of over 70 000 cells generated on the 10× Genomics Chromium platform. Our results demonstrate a highly comparable performance between the NovaSeq 6000 and MGISEQ-2000 in sequencing quality, and the detection of genes, cell barcodes, Unique Molecular Identifiers. The performance of the NextSeq 500 was also similarly comparable to the MGISEQ-2000 based on the same metrics. Data generated by both sequencing platforms yielded similar analytical outcomes for general single-cell analysis. The performance of the NextSeq 500 and MGISEQ-2000 were also comparable for the deconvolution of multiplexed cell pools via variant calling, and detection of guide RNA (gRNA) from a pooled CRISPR single-cell screen. Our study provides a benchmark for high-capacity sequencing platforms applied to high-throughput scRNA-seq libraries.

13.
Gigascience ; 8(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505654

RESUMO

BACKGROUND: Recent developments in single-cell RNA sequencing (scRNA-seq) platforms have vastly increased the number of cells typically assayed in an experiment. Analysis of scRNA-seq data is multidisciplinary in nature, requiring careful consideration of the application of statistical methods with respect to the underlying biology. Few analysis packages exist that are at once robust, are computationally fast, and allow flexible integration with other bioinformatics tools and methods. FINDINGS: ascend is an R package comprising tools designed to simplify and streamline the preliminary analysis of scRNA-seq data, while addressing the statistical challenges of scRNA-seq analysis and enabling flexible integration with genomics packages and native R functions, including fast parallel computation and efficient memory management. The package incorporates both novel and established methods to provide a framework to perform cell and gene filtering, quality control, normalization, dimension reduction, clustering, differential expression, and a wide range of visualization functions. CONCLUSIONS: ascend is designed to work with scRNA-seq data generated by any high-throughput platform and includes functions to convert data objects between software packages. The ascend workflow is simple and interactive, as well as suitable for implementation by a broad range of users, including those with little programming experience.


Assuntos
Biologia Computacional/métodos , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única , Software , Genômica/métodos , Controle de Qualidade , Fluxo de Trabalho
14.
EMBO J ; 38(18): e100811, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31436334

RESUMO

The retina is a specialized neural tissue that senses light and initiates image processing. Although the functional organization of specific retina cells has been well studied, the molecular profile of many cell types remains unclear in humans. To comprehensively profile the human retina, we performed single-cell RNA sequencing on 20,009 cells from three donors and compiled a reference transcriptome atlas. Using unsupervised clustering analysis, we identified 18 transcriptionally distinct cell populations representing all known neural retinal cells: rod photoreceptors, cone photoreceptors, Müller glia, bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells, astrocytes, and microglia. Our data captured molecular profiles for healthy and putative early degenerating rod photoreceptors, and revealed the loss of MALAT1 expression with longer post-mortem time, which potentially suggested a novel role of MALAT1 in rod photoreceptor degeneration. We have demonstrated the use of this retina transcriptome atlas to benchmark pluripotent stem cell-derived cone photoreceptors and an adult Müller glia cell line. This work provides an important reference with unprecedented insights into the transcriptional landscape of human retinal cells, which is fundamental to understanding retinal biology and disease.


Assuntos
Degeneração Neural/genética , RNA Longo não Codificante/genética , Retina/química , Análise de Célula Única/métodos , Transcriptoma , Autopsia , Análise por Conglomerados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos , Células Fotorreceptoras Retinianas Bastonetes/química , Análise de Sequência de RNA , Aprendizado de Máquina não Supervisionado
15.
Virology ; 537: 14-19, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425970

RESUMO

Human Papillomavirus infection is highly prevalent worldwide. While most types of HPV cause benign warts, some high-risk types are known to cause cervical cancer, as well as cancer of the oral cavity and head and neck. Persistent cutaneous HPV infection can be particularly problematic in patients with chronic immunosuppression, for example following organ transplantation. Due to unknown mechanisms, these patients may develop numerous warts, as well as present with a dramatically increased skin cancer prevalence. Despite an association between HPV persistence in the epidermis and excessive wart or squamous cancer development, the molecular mechanisms linking immunosuppression, HPV expression and excessive epidermal proliferation have not been determined, largely due to low-sensitivity methodology to capture rare viral transcription events. Here, we use single-cell RNA sequencing to profile HPV-positive skin lesions from an immunosuppressed patient that were found to express the alphapapillomavirus HPV78 in basal keratinocytes, suprabasal keratinocytes and hair follicle stem cells. This method can be applied to detect and investigate HPV transcripts in cutaneous lesions, allowing mechanistic links between immunosuppression-induced HPV life cycle and epidermal hyperproliferation to be uncovered.


Assuntos
Epiderme/virologia , Perfilação da Expressão Gênica , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Análise de Célula Única , Transcrição Gênica , Verrugas/virologia , Adulto , Humanos , Hospedeiro Imunocomprometido , Papillomaviridae/crescimento & desenvolvimento , Infecções por Papillomavirus/patologia , Análise de Sequência de RNA , Verrugas/patologia
16.
Cell Rep ; 27(9): 2748-2758.e3, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141696

RESUMO

The cellular and molecular profiles that govern the endothelial heterogeneity of the circulatory system have yet to be elucidated. Using a data-driven approach to study the endothelial compartment via single-cell RNA sequencing, we characterized cell subpopulations within and assigned them to a defined endothelial hierarchy. We show that two transcriptionally distinct endothelial populations exist within the aorta and, using two independent trajectory analysis methods, confirm that they represent transitioning cells rather than discrete cell types. Gene co-expression analysis revealed crucial regulatory networks underlying each population, including significant metabolic gene networks in progenitor cells. Using mitochondrial activity assays and phenotyping, we confirm that endovascular progenitors display higher mitochondrial content compared to differentiated endothelial cells. The identities of these populations were further validated against bulk RNA sequencing (RNA-seq) data obtained from normal and tumor-derived vasculature. Our findings validate the heterogeneity of the aortic endothelium and previously suggested hierarchy between progenitor and differentiated cells.


Assuntos
Aorta/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Endotélio Vascular/metabolismo , Análise de Célula Única/métodos , Transcriptoma , Animais , Aorta/citologia , Endotélio Vascular/citologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/citologia , Células-Tronco/metabolismo
17.
Clin Epigenetics ; 11(1): 49, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871624

RESUMO

BACKGROUND: Major challenges in understanding the functional consequences of genetic risk factors for human disease are which tissues and cell types are affected and the limited availability of suitable tissue. The aim of this study was to evaluate tissue-specific genotype-epigenetic characteristics in DNA samples from both endometrium and blood collected from women at different stages of the menstrual cycle and relate results to genetic risk factors for reproductive traits and diseases. RESULTS: We analysed DNA methylation (DNAm) data from endometrium and blood samples from 66 European women. Methylation profiles were compared between stages of the menstrual cycle, and changes in methylation overlaid with changes in transcription and genotypes. We observed large changes in methylation (27,262 DNAm probes) across the menstrual cycle in endometrium that were not observed in blood. Individual genotype data was tested for association with methylation at 443,016 and 443,101 DNAm probes in endometrium and blood respectively to identify methylation quantitative trait loci (mQTLs). A total of 4546 sentinel cis-mQTLs (P < 1.13 × 10-10) and 434 sentinel trans-mQTLs (P < 2.29 × 10-12) were detected in endometrium and 6615 sentinel cis-mQTLs (P < 1.13 × 10-10) and 590 sentinel trans-mQTLs (P < 2.29 × 10-12) were detected in blood. Following secondary analyses, conducted to test for overlap between mQTLs in the two tissues, we found that 62% of endometrial cis-mQTLs were also observed in blood and the genetic effects between tissues were highly correlated. A number of mQTL SNPs were associated with reproductive traits and diseases, including one mQTL located in a known risk region for endometriosis (near GREB1). CONCLUSIONS: We report novel findings characterising genetic regulation of methylation in endometrium and the association of endometrial mQTLs with endometriosis risk and other reproductive traits and diseases. The high correlation of genetic effects between tissues highlights the potential to exploit the power of large mQTL datasets in endometrial research and identify target genes for functional studies. However, tissue-specific methylation profiles and genetic effects also highlight the importance of also using disease-relevant tissues when investigating molecular mechanisms of disease risk.


Assuntos
Metilação de DNA , Endométrio/química , Ciclo Menstrual/genética , Locos de Características Quantitativas , Adulto , Análise Química do Sangue , Endometriose/genética , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Ciclo Menstrual/sangue , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , População Branca/genética
18.
Respirology ; 24(1): 29-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30264869

RESUMO

The past four decades have yielded advances in molecular biology allowing detailed characterization of the cellular genome and the transcriptome: the complete set of RNA species transcribed by a cell or tissue. Through transcriptomics and next-generation sequencing, we can now attain an unprecedented level of detail in understanding cellular phenotypes through examining the genes expressed in specific physiological and pathological states. In this review, we provide an overview of transcriptomics and RNA-sequencing in the analysis of whole tissue and single cells. We describe the techniques and pitfalls involved in the isolation and sequencing of single cells, and what additional benefits this application can provide. Finally, we look to how these technologies are being applied in pulmonary research, and how they may translate in the near future into clinical practice.


Assuntos
Pesquisa Biomédica , Pneumopatias , Transcriptoma/fisiologia , Pesquisa Translacional Biomédica , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Tecnologia Biomédica , Humanos , Pneumopatias/genética , Pneumopatias/terapia , Análise de Sequência
19.
Cell Stem Cell ; 23(4): 586-598.e8, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290179

RESUMO

Cardiac differentiation of human pluripotent stem cells (hPSCs) requires orchestration of dynamic gene regulatory networks during stepwise fate transitions but often generates immature cell types that do not fully recapitulate properties of their adult counterparts, suggesting incomplete activation of key transcriptional networks. We performed extensive single-cell transcriptomic analyses to map fate choices and gene expression programs during cardiac differentiation of hPSCs and identified strategies to improve in vitro cardiomyocyte differentiation. Utilizing genetic gain- and loss-of-function approaches, we found that hypertrophic signaling is not effectively activated during monolayer-based cardiac differentiation, thereby preventing expression of HOPX and its activation of downstream genes that govern late stages of cardiomyocyte maturation. This study therefore provides a key transcriptional roadmap of in vitro cardiac differentiation at single-cell resolution, revealing fundamental mechanisms underlying heart development and differentiation of hPSC-derived cardiomyocytes.


Assuntos
Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Análise de Célula Única , Transcriptoma , Proteínas Supressoras de Tumor/genética , Animais , Células Cultivadas , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Supressoras de Tumor/metabolismo
20.
Sci Rep ; 8(1): 11424, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061686

RESUMO

Gene expression varies markedly across the menstrual cycle and expression levels for many genes are under genetic control. We analyzed gene expression and mapped expression quantitative trait loci (eQTLs) in endometrial tissue samples from 229 women and then analyzed the overlap of endometrial eQTL signals with genomic regions associated with endometriosis and other reproductive traits. We observed a total of 45,923 cis-eQTLs for 417 unique genes and 2,968 trans-eQTLs affecting 82 unique genes. Two eQTLs were located in known risk regions for endometriosis including LINC00339 on chromosome 1 and VEZT on chromosome 12 and there was evidence for eQTLs that may be target genes in genomic regions associated with other reproductive diseases. Dynamic changes in expression of individual genes across cycle include alterations in both mean expression and transcriptional silencing. Significant effects of cycle stage on mean expression levels were observed for (2,427/15,262) probes with detectable expression in at least 90% of samples and for (2,877/9,626) probes expressed in some, but not all samples. Pathway analysis supports similar biological control of both altered expression levels and transcriptional silencing. Taken together, these data identify strong genetic effects on genes with diverse functions in human endometrium and provide a platform for better understanding genetic effects on endometrial-related pathologies.


Assuntos
Endometriose/genética , Endométrio/metabolismo , Endométrio/patologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Síndrome do Ovário Policístico/genética , Adulto , Alelos , Estudos de Casos e Controles , Cromossomos Humanos Par 5/genética , Feminino , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Humanos , Ciclo Menstrual/genética , Metanálise como Assunto , Anotação de Sequência Molecular , Locos de Características Quantitativas/genética , Fatores de Risco , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...